

Akademie für Lehrerfortbildung

Digitale Transformation

Grundlagen CAM in einer digitalisierten CAx-Prozesskette

Interdisziplinäre Qualifizierung von Lehrkräften in den Berufsfeldern Elektrotechnik, Metalltechnik und Informationstechnologie

Inhalt

Impressum		2
Vorwort		3
Geometrische Pro	duktspezifikation (GPS)	4
Bohrlehre		8
Lab 01 - Haken - 21	D (Position 6)	10
Lab 02 - Buchsena	ufnahme - 2D (Position 7)	15
Lab 03 - Stiftehalte	er – 3D	21
Fortbildungsmodu	le	29

IMPRESSUM

Herausgeber:	Akademie für Lehrerfortbildung und Personalführung
	Kardinal von Waldburg-Str. 6-7
	89407 Dillingen/Donau
Redaktionsgruppe:	Andreas Fester, Staatl. Berufsschule I Bamberg
0 11	Hasan Gencel, Städt. Berufsschule 2 Nürnberg
	Martin Siegert, Städt. Berufsschule 2 Nürnberg
	Richard Lang, Staatl. Berufsschule Weiden i.d. OPf.
	Thomas Glaser, Staatl. Berufsschule Weiden i.d.OPf.
	Andreas Henle, Staatl. Berufsschule 1 Straubing
	Wolfgang Liedtke, Staatl. Berufliches Schulzentrum Wasserburg am Inn
	Robert Winderl, Staatl. Berufsschule Weiden i.d.OPf.
	Markus Rawitzer, Akademie Dillingen
Redaktionsleitung:	Michael Lotter, Akademie Dillingen
URL:	http://alp.dillingen.de
Mail:	m.lotter@alp.dillingen.de
Stand:	April 2018
	atliches Berufliches nulzentrum Bamberg

Dieses Dokument steht unter einer CC BY-SA 4.0-Lizenz. Urheber ist die genannte Redaktionsgruppe der Akademie für Lehrerfortbildung und Personalführung, Dillingen.

VORWORT

Das Fortbildungsmodul CAM-Grundlagen fördert Grundfertigkeiten im Umgang mit moderner CAM-Software und bietet Anregungen für den Unterricht in der beruflichen Bildung. Dabei werden aktuelle Entwicklungen berücksichtigt.

Aufbauend auf 3D-Modellen die mit CAD-Software (z. B. Inventor) erstellt sind, werden folgende Zielsetzungen umgesetzt:

Fachliche Zielsetzungen

- Arbeitsplan und Bearbeitungsstrategien festlegen können.
- Werkzeugbestückung festlegen können und Werkzeuge anpassen können.
- Relevante Simulationsarten anwenden können.
- CNC-Programm auf reale Maschine übertragen und testen können.

Didaktische Zielsetzungen

- Erworbene Fertigkeiten in einem abgesteckten Rahmen auf verschiedene Beispiele übertragen können (variable Verfügbarkeit).
- Bereitgestelltes Lehr- und Lernmaterial im eigenen Unterricht anwenden können.
- Ein Unterrichtsbeispiel (z. B. Lernsituation) in der Schülerrolle bearbeiten können und reflektieren.
- Eine vorgegebene didaktische Jahresplanung auf die eigene Unterrichtssituation übertragen können.

GEOMETRISCHE PRODUKTSPEZIFIKATION (GPS)

Bis ein Produkt beim Kunden in Händen liegt, sind viele Prozessschritte erforderlich. Diese können in Form einer Prozesskette dargestellt werden. Dabei durchläuft das Produkt drei Bereiche. Die Konstruktion, die Produktion sowie das Prüfwesen (Qualitätssicherung, vgl. Abb. 1).

Spezifikation - Verifikation

In der Konstruktion entsteht am Bildschirm im CAD-System ein virtuelles Modell als 3D-CAD-Datensatz. In der Konstruktion steht die Funktion des Produkts an oberster Stelle. Um die Funktion zu gewährleisten wird das 3D-Modell spezifiziert. Dabei werden Merkmale festgelegt (z. B. Maßtoleranzen). Die aus dem 3D-Datensatz generierten fertigungs- und prüfrelevanten Informationen werden an die Produktion und das Prüfwesen weitergeleitet. Dies geschieht entweder als 2D-Zeichnung (technischen Zeichnung) oder als dreidimensionales Volumenmodell (Solid). Die Zeichnung liegt in papierform oder digital vor.

Seite 5

les Produkt (Werkstück) her. Das reale Produkt unterscheidet sich vom virtuellen Modell durch Gestaltabweichungen. Gestaltabweichungen treten durch folgende Fehler auf (vgl. Abb. 2):

- Maßfehler
- Formfehler
- Lagefehler
- Oberflächenfehler

Geometrieelemente (Körperkanten, Oberflächen, …) müssen toleriert werden, um die Funktion des Produkts zu gewährleisten und die fertigungsbedingten Gestaltabweichungen in Grenzen zu halten. Toleriert wird immer so, dass die Funktion gerade noch gegeben ist.

Parallel zum Herstellungsprozess und/oder im Anschluss daran, werden Werkstücke geprüft. Die Prüfung vergleicht die im virtuellen Modell spezifizierten Anforderungen mit dem real hergestellten Werkstück. Das Prüfwesen (Qualitätssicherung) verifiziert das virtuelle Volumenmodell mit dem realen Werkstück. D. h. das Prüfwesen erzeugt ein sogenanntes "zugeordnetes (assoziiertes) Werkstück". Dies geschieht in zwei Schritten.

Im ersten Schritt wird das reale Werkstück durch Abtasten erfasst (extraction). Dabei entsteht eine Punktewolke.

Im zweiten Schritt werden die durch die Abtastung erzeugten Daten zugeordnet (association). Zuordnung bedeutet, dass die abgetasteten Punkte/Punktewolken bestimmten Kriterien zugeordnet werden. Z. B. der Mittelwert der Punkte oder alle Maximalwerte werden als Messergebnisse für den Soll-Ist-Vergleich herangezogen.

Die Spezifikation geht aus der 2D-Zeichnung oder aus Informationen des 3D-Datensatzes (Volumen-, Flächenmodell) hervor. Hier wird den Fragen nachgegangen, welche in der Spezifikation beschriebenen Merkmale wie geprüft werden? Diese Spezifikation wird durch enge Zusammenarbeit der drei, an der Produktentwicklung beteiligten Bereiche Konstruktion, Produktion und Prüfwesen definiert. Die Normen der Geometrische Produktspezifikation (GPS) ermöglichen diesen übergreifenden Austausch zwischen den drei Abteilungen. Die GPS-Normenmatrix nimmt auf den o.g. Ablauf der Werkstückentstehung Bezug. Die GPS-Normenkette lässt sich vereinfacht in einer Matrix darstellen (vgl. Tab. 1). Ziel der GPS-Normung ist, einen Austausch zwischen Konstruktion, Produktion und Prüfwesen zu ermöglichen, der dem technischen Wandel der letzten Jahrzehnte gerecht wird.

	Spezifikation			Verifikation								
1	2	3	4	5	6							
Technische Zeichnung / 3D-Modell	Toleranzen / Festlegung der zul. Gestaltab- weichungen	Merkmale (Ma- ße, Form, La- ge,)	Soll-Ist-Vergleich der Abweichun- gen (Annahme- bedingung)	Messtechnik: Festlegung der Messtechnik und Messunsicherheit	Kalibrierung: Ermittlung der Messunsicherheit							
Tab. 1: Matrix der G	GPS – Normenkette											

Konstruktionsmethodik in der CAD/CAM Prozesskette

Die meisten Werkstücke werden in der CAD-Konstruktion auf Nennmaß konstruiert. Dabei werden im 3D-Datensatz, die aufgrund der Funktion vergebenen Toleranzen nicht berücksichtigt. Die Toleranzangaben werden erst in der anschließend abgeleiteten technischen Zeichnung eingefügt. Im Rahmen eines automatisierten durchgängigen CAD/CAM-Prozesses, geht der Trend immer mehr weg von der Fertigung mit Hilfe von technischen Zeichnungen. In einer durchgängigen Prozesskette werden die generierten CAD-Daten im nachgelagerten Produktions- und Fertigungsprozess oftmals ohne Zeichnung weiterverwendet. Die fertigungsrelevanten Informationen gehen aus dem 3D-Datensatz hervor. Bei dieser Vorgehensweise treten durch die o.g. Konstruktion der Solids auf Nennmaß Probleme auf. Dadurch wird die Datenaufbereitung im CAM-Bereich erschwert. Liegen die 3D-Daten als Nennmaße vor, müssen alle Maße umgerechnet werden. D.h., dass jedes Maß auf Mitte Toleranzfeld geändert werden muss (vgl. Abb. 2).

BOHRLEHRE

Intention

Die Bohrlehre wird benötigt, um an einer Buchse eine radiale Bohrung zu erzeugen.

Die Buchse wird über den Aufnahmebolzen geschoben, mit dem Haken gesichert und mit der Rändelmutter gespannt.

Mit dem vorliegenden CAM-Grundkurs sollen die Teilnehmer die nötigen Fertigkeiten erwerben, um einzelne Bauteile mit Inventor-HSM zu bearbeiten. Die Programmierung erfolgt hierbei nicht konventionell, sondern die Programme werden auf Grundlage eines CAD Modells generiert. Dabei werden verschiedene Frässtrategien mit den erforderlichen Werkzeugen und Technologiedaten angewendet.

Nach der Simulation werden die Programme mit einem Postprozessor auf das Format der Maschinensteuerung erzeugt und anschließend auf die CNC Maschine übertragen.

Die Aufgabenstellung eignet sich je nach didaktischer Jahresplanung sowohl für eine Lehrerfortbildung, als auch für den Einsatz im Unterricht für die 11. und 12. Klassen im Metallbereich.

Gesamtzeichnung Bohrlehre

LAB 01 - HAKEN - 2D (POSITION 6)

Arbeitsplan

Nr.	Arbeitsschritte	HSM-Inventor	Hinweise
1.1.1	Nullpunkt setzen (Rohteilrahmen) Rohteilmaße festlegen Spannen im Schraubstock	Setup	
1.1.2	Oberseite plan fräsen	<u> </u>	<u> </u>
	Werkzeug: Planfräser: PF-D40R0 oder Ø 40 mm, z=5 Messerkopf Schnittdaten festlegen:	Strategie: Planen Simulieren	Schnittdatener- mittlung z. B. über Beiblatt oder www.toolscout.de
	Vc= f _z = Arbeitsschritt prüfen		
1.1.3	Kontur schruppen		
	Werkzeugauswahl: Schaftfräser: SFR-D8R0 Ø = 8mm, z = 2	Strategie: 2D Adap- tiv	Fräs- strategie: Trochoidal Fräsen (TPC)
	Schnittdaten festlegen: Vc= f _z =	Höhen: Versatz un- ten: Endtiefe: -1mm	
1.1.4	Kontur schlichten		
	Werkzeugauswahl: Schaftfräser: SFR-D8R0 Ø = 8mm, z = 2	Strategie: 2D- Kontur	Frässtrategie: Eckfräsen
	Schnittdaten festlegen: $Vc =$ $f_z =$ Schnitttiefe: Z -7	Höhen: Versatz un- ten: Endtiefe: -1mm	

1.1.5	Bohren		
	Werkzeugauswahl: Spiralbohrer: SB-D5,7 HSS; Ø = 5,7	Strategie: Bohren	
	Schnittdaten festlegen: Vc= f _z =	Höhen: Versatz un- ten: Endtiefe: -4 mm	
	Bonrtiere: Durchgangsbonrung		
1.1.6	Entgraten	1	
	Werkzeugauswahl: Entgrater/Fasenfräser: FF-D6-90° VHM	Strategie: 2D Fase	
	Schnittdaten festlegen Vc= f _z =	Fasenbreite: 0,3mm	
1.1.7	Reiben		
	Werkzeug neu erstellen: Reibahle HSS: Ø = 6H7	Strategie: Bohren (Reiben)	
	Schnittdaten festlegen Vc= f _z =	Höhen: Versatz un- ten: Endtiefe: -1 mm	
	Bohrtiefe: Durchgangsbohrung		
1.1.8	Umspannen		
	Nullpunkt setzen (Rohteilrahmen)		
	Rohteilmaße: 80x50x11,5 Versatz: 5,5mm		

1.1.9	Planfläche schruppen und schlichte	n	
	Werkzeugauswahl: Planfräser: PF-D40R0 Messerkopf	Strategie: Planen	
	Schnittdaten festlegen: Vc= f _z = Durchgänge: Tiefenschnitte: max. Tiefenzustellung: 3 mm; Schlichttiefenzustellung: 1 mm		
1.1.10	Entgraten		
	Werkzeugauswahl: Entgrater/Fasenfräser: FF-D6-90° VHM	Strategie: 2D Fase	
	Schnittdaten festlegen Vc= f _z =	Fasenbreite: 0,3mm	

Notizen

<u> </u>						 			 			 	 		 		
<u> </u>		 		 	 								 				
	L	 L	L	 	 		L			L			 				
-		 		 	 	 			 			 	 		 		
		 		 	 	 			 			 	 	 _	 		
																	-
-																	
	<u> </u>	 	<u> </u>	 	 		<u> </u>						 				

Seite 15

LAB 02 - BUCHSENAUFNAHME - 2D (POSITION 7)

Arbeitsplan

Nr.	Arbeitsschritte	HSM-Inventor	Hinweise
1.2.1	Nullpunkt setzen Rohteilmaße festlegen Programmnummer vergeben	Setup 1	
1.2.2	Oberseite Planfräsen		5
	Werkzeugauswahl: Schaftfräser: SFR-D12R0 VHM	Planen	Schnittdatener- mittlung z.B. über Beiblatt oder www.toolscout.de
	Schnittdaten:		
1.2.3	Außenkontur schruppen		
	Werkzeugauswahl: Schaftfräser: SFR-D12R0 VHM Schnittdaten: Vc= f _z =	2D-Adaptive	
1.2.4	Außenkontur schlichten	<u> </u>	<u> </u>
	Werkzeugauswahl: Schaftfräser: SFR-D12R0 VHM Schnittdaten: Vc= f _z =	2D-Kontur	

1.2.5	Bohrung D=18H7 schruppen und sch	lichten	
	Werkzeugauswahl: Schaftfräser: SFR-D12R0 VHM	Bohrfräsen	
	Schnittdaten: Vc= f _z =		
1.2.6	Vorbohren für D=6H7		
	Werkzeugauswahl: Spiralbohrer: SB-D5,7 HSS	Bohren	
	Schnittdaten: Vc= f _z =		
1.2.7	Bohren D=6,6mm		
	Werkzeugauswahl: Spiralbohrer: SB-D6,6 HSS	Bohren	
	Schnittdaten:		
1.2.8	Senken D=11mm		
	Werkzeugauswahl: Schaftfräser: SFR-D8R0 VHM	Bohrfräsen	
	Schnittdaten: Vc= f _z =		

1.2.9	Entgraten auf Oberseite		
	Werkzeugauswahl: Entgrater / Fasenfräser: FF-D6-90° VHM	2D Fase	
	Schnittdaten: Vc= f _z =		
1.2.10	Fase 2mm und 1mm	<u></u>	<u> </u>
	Werkzeugauswahl: Entgrater / Fasenfräser: FF-D6-90° VHM	2D Fase	
	Schnittdaten: Vc= f _z =		
1.2.11	Nullpunkt setzen		
	Rohteilmaße festlegen Programmnummer vergeben	Setup 2	
1.2.12	Unterseite Planfräsen	8	5
	Werkzeugauswahl: Schaftfräser: SFR-D12R0 VHM Schnittdaten: VC= f _z =	Planen	

1.2.13	Nut schruppen		
	Werkzeugauswahl: Schaftfräser: SFR-D8R0 VHM	2D-Adaptive	
	Schnittdaten: Vc= f _z =		
1.2.14	Nut schlichten	-	
	Werkzeugauswahl: Schaftfräser: SFR-D8R0 VHM Schnittdaten: Vc= f _z =	2D-Kontur	
1.2.15	Entgraten auf Unterseite		
	Werkzeugauswahl: Entgrater / Fasenfräser: FF-D6-90° VHM Schnittdaten:	2D Fase	
	Vc= f _z =		
1.2.16	G-Code generieren		
		Postprozess	

Notizen

	 	 		 	 	_		_	_	 	 	_	 	 _		_
		 	 	 	 	_	 	_	 _	 	 	_		 _	 	
	 	 		 	 	_				 	 		 	 		
	 	 	 	 	 	_		_	 _	 	 	_	 	 _	 	
 	 	 		 	 	_	 		 	 	 		 	 	 	
 	 	 	 	 	 	_	 	_	 _	 	 	_	 	 _	 	
						_		_	_			_		_		

LAB 03 - STIFTEHALTER - 3D

Szenario

Oft werden z. B. kleine Geschenke/Werbegeschenke für Gäste/Besucher mit einem Firmenlogo benötigt. Als einfaches und nützliches Bauteil bietet sich ein Stiftehalter/Briefbeschwerer an. Mit Hilfe der 3D-Strategien können Sie komplexere dreidimensionale Objekte recht einfach erstellen. Sie haben dann auch die Möglichkeit die entsprechende Formen und Texte schnell und einfach anzupassen und die für die maschinelle Fertigung benötigten Fräsprogramme zu erzeugen.

Aufgaben

Obig abgebildeter Stiftehalter soll gezeichnet werden. Erstellen Sie eine 3 D Modell.

Bearbeitungshinweise

Entnehmen Sie die notwendigen Technologiedaten der nachfolgenden Gesamtzeichnung mit Bemaßung.

Gesamtzeichnung mit Bemaßung

Arbeitsplan Stiftehalter –

Nr.	Arbeitsschritte	HSM-Inventor	Hinweise
1.3.1	Nullpunkt setzen Rohteilmaße festlegen Programmnummer vergeben	Setup 1	Rohteil 70 x 50 x 50 mm
1.3.2	Oberseite Planfräsen		
	Werkzeugauswahl: Planfräser: PF-D40R0 Messerkopf Schnittdaten: Vc= f_z =	Planen	Schnittdatener- mittlung z. B. über Beiblatt oder www.toolscout.de
1.3.3	Bohren	1	
	Werkzeugauswahl: Spiralbohrer: SB-D8R0 HSS Schnittdaten:	Bohren	
	Vc= f _z =		
1.3.4	Außenkontur schruppen		
	Werkzeugauswahl: Torusfräser: TR-D8R2 VHM	3D-Adaptive	
	Schnittdaten:		
	Vc= f _z =		

1.3.5	Außenkontur schlichten Oberteil										
	Werkzeugauswahl: Radius-/Kugelfräser KF-D10 VHM	3D-Kontur									
	Schnittdaten: Vc= f _z =										
1.3.6	Außenkontur schlichten Übergang										
	Werkzeugauswahl: Radius-/Kugelfräser KF-D10 VHM	3D-Parallel									
	Schnittdaten: Vc= f _z =										
1.3.7	Außenkontur schlichten Fuß										
	Werkzeugauswahl: Radius-/Kugelfräser KF-D10 VHM	3D-Kontur									
	Schnittdaten:										
120	$Vc = t_z =$										
1.3.8	Umspannen										
1.3.9	Nullpunkt setzen		1								
	auf Modellrahmen Rohteilmaße festlegen	Setup 2									

1.3.10	Planfräsen		
	Werkzeugauswahl: Planfräser: PF-D40R0 Messerkopf Schnittdaten:	Planen	
1.3.11	Tasche fräsen		
	Werkzeugauswahl: Torusfräser: TR-D8R2 VHM Schnittdaten:	3D Tasch	
	Vc= f _z =		
1.3.12	Tasche Schlichten		
	Werkzeugauswahl: Radius-/Kugelfräser KF-D10 VHM	3D Kontur	
	Schnittdaten:		
1.3.13	Entgraten		
	Werkzeugauswahl: Entgrater / Fasenfräser: FF-D6-90° VHM	2D Fase	
	Schnittdaten: Vc= f _z =		

1.3.14	Umspannen											
1.3.15	Nullpunkt setzen											
	auf Modellrahmen Setup 3 Rohteilmaße festlegen											
1.3.16	Text Gravieren											
	Gravierfräser: GF-D4-60° VHM	Gravieren										
	Schnittdaten:											
	Vc= f _z =											
1.3.17	G-Code generieren											
		Postprozess										

Einbettung in den Unterricht

Grundlegende Informationen

Beruf: Industriemechaniker/Industriemechanikerin

Jahrgangsstufe: 12

Lernfeld: Fertigungstechnik – Planen und Realisieren technischer Systeme

Thema: CNC-Programmerstellung mit Hilfe einer CAD/CAM-Software

Kernkompetenz des Lernfeldes:

Die Schülerinnen und Schüler planen und realisieren technische Systeme. Sie analysieren Projektaufträge und definieren Ziele.

Sie übernehmen die Projektorganisation, dokumentieren den Projektfortschritt, analysieren und bewerten den Verlauf und leiten notwendige Maßnahmen ein.

Ausgewählte Teilkompetenzen der Lernsituation

Die Schülerinnen und Schüler ...

- konstruieren einen Stiftehalter in 3D.
- > erstellen fertigungsgerechte Unterlagen.
- wenden aktuelle CAD / CAM-Software an um daraus das dazugehörige CNC-Programm zu generieren.
- > besprechen, diskutieren und optimieren das generierte CNC-Programm
- fertigen den Stiftehalter an der CNC-Maschine und überprüfen und reflektieren die Ergebnisse.

Geschätzter Zeitumfang: 60 Minuten

Notizen

	 	 		 	 	_	 	_	_	_	 	 	 	 	_	_	
		 	 	 	 	_	 	_	_	_	 	 		 	_	_	
	 	 	 	 	 	_	 	_	_	_	 	 	 	 	_	_	
	 	 	 	 	 	_	 	_	_	_	 	 	 	 	_	_	
 	 	 		 	 	_	 				 	 	 	 			
 	 	 		 	 	_	 	_	_	_		 	 		_	_	

FORTBILDUNGSMODULE